Search results for "Principal eigenvalue"

showing 2 items of 2 documents

Principal eigenvalue of a very badly degenerate operator and applications

2007

Abstract In this paper, we define and investigate the properties of the principal eigenvalue of the singular infinity Laplace operator Δ ∞ u = ( D 2 u D u | D u | ) ⋅ D u | D u | . This operator arises from the optimal Lipschitz extension problem and it plays the same fundamental role in the calculus of variations of L ∞ functionals as the usual Laplacian does in the calculus of variations of L 2 functionals. Our approach to the eigenvalue problem is based on the maximum principle and follows the outline of the celebrated work of Berestycki, Nirenberg and Varadhan [H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operator…

Pure mathematicsApplied MathematicsMathematical analysisMathematics::Analysis of PDEsLipschitz continuityElliptic operatorOperator (computer programming)Maximum principleInfinity LaplacianMaximum principleInfinity LaplacianPrincipal eigenvalueUniquenessLaplace operatorEigenvalues and eigenvectorsAnalysisMathematicsJournal of Differential Equations
researchProduct

On Noncoercive (p, q)-Equations

2021

We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.

Dirichlet problemTruncationGeneral MathematicsMathematical analysisGeneral Physics and AstronomyDifferential operator(pq)-LaplacianNonlinear systemextremal solutionsprincipal eigenvalueSettore MAT/05 - Analisi Matematicanonlinear regularityconstant sign and nodal solutionsSign (mathematics)Mathematics
researchProduct